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The stress distribution was determined on the boundary of crazes in a homopolymer and copolymer of 
polyethylene. The direct method was based on the direct measurement of the strain distribution and the 
stress--strain curve of the matrix. The semi-theoretical method was that of Wang and Kramer where the 
displacement profile of the craze was measured and the stress was calculated by a linear theory of elasticity. 
The assumption of linear elasticity in the matrix produces higher values of the stress when compared to the 
results of the direct method and the shape of the stress distribution is somewhat different. 
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I N T R O D U C T I O N  

When a material with a sharp notch is loaded, a zone of 
damage generally initiates from the notch unless the 
material is so brittle that only crack growth occurs. The 
zone of damage may be in the form of a shear band, a 
craze, or a combination of the two. The zone of damage is 
generally the precursor for crack growth. The stress 
distribution on the boundary of the zone of damage plays 
an important part in our understanding of the fracture 
process. Many investigations have been made of this 
stress distribution for zones of damage in the form of 
crazes, shear bonds or an array of voids. These 
investigations have ranged from the purely theoretical to 
the purely experimental. 

One of the simplest theories is by Dugdale ~, who 
assumed that for a thin planar zone of damage the stress 
normal to the damaged zone is constant and equal to the 
yield point. The Dugdale theory assumes that the matrix 
was an elastic-plastic non-work-hardening solid and thus 
predicts the size and shape of the damaged zone. Brown 
and Ward 2 and Dolls measured the geometry of crazes in 
poly(methyl methacrylate) (PMMA) using an in- 
tefferometric technique and found agreement with the 
Dugdale theory. Imai and Ward 4 found that the Dugdale 
theory did not predict their observations on crazes 
produced by fatigue in P M M A  and they calculated a non- 
uniform stress distribution to fit their craze geometry. 

Knight 5, Verheulpen-Heymans and Bauwens 6, 
Wilczynski et al. T, Walton and Weitsman s, Bevan 9, 
Warren ~° and Wilkinson and Vitek 11 used a purely 
theoretical approach based on a theoretical model of the 
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structure of the damage zone and on the assumption that 
the matrix was linear elastic. 

Wang and Kramer 12 used a semi-theoretical method to 
determine the stress distribution. Their experimental 
input was the displacement profile of the damage zone 
and their theoretical equation for calculating the stress 
distribution was based on representation of a crack by a 
continuous array of dislocations as originally proposed 
by Bilby and Eshelby ~ 3. Again it was assumed that the 
matrix was linear elastic. 

Brown and Wang TM introduced a new purely 
experimental method for directly measuring the strain 
distribution along the boundary of a craze. Then from the 
actual stress-strain curve of the matrix, the stress 
distribution was directly inferred. In this paper the results 
of the Brown-Wang ~4 method are compared with the 
results of the Wang-Kramer  ~2 method for two types of 
crazes in polyethylene. We used the same basic equation 
as presented by Wang and Kramer, but only modified the 
procedure for evaluating the basic integral. 

In these experiments the length of the crazes were about 
one-tenth the length of the notch. Thus the equation (2 lb) 
in the Wang-Kramer  paper ~ 2 as derived by HarO 5 for the 
semi-infinite crack case appears to be most appropriate 
for calculating the stress distribution, S(x), where: 

a 

at 

0 

(1) 

where ~(x)= -2Ow(x)/Ox and E* = E for plane stress and 
E/(1 - v 2) for plane strain; E is Young's modulus and v is 
Poisson's ratio; w(x) is the displacement profile of the 
craze and is related to the measured thickness profile of 
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Figure 1 Schematic of craze 

the craze, T(x), by the equation: 

w(x) =½T(x)[1 - Vr(x)] (2) 

Vf is the volume fraction of the fibrils that constitute the 
craze and how itis measured will be described below. The 
length of craze is a, and x is the distance of a point from 
the origin at the notch tip (Figure 1). Since equation (1) 
involves a singularity wherever x=t ,  the integral in 
equation (I) cannot be evaluated by the common 
procedure. A detailed recipe for evaluating equation (1) is 
given in the Appendix. The details for determining 0¢(x) by 
means of equation (2) will be given in the 'Experimental' 
section. 

In applying equation (1) it is assumed that the zone of 
damage is thin in the sense that its aspect ratio is small. 
The length-to-thickness ratio of the crazes in this 
investigation is about 5. The crazes were produced in 
commercial resins of polyethylene under plane strain 
conditions and represent the same kind of crazes from 
which cracks slowly grow and which cause the type of 
field failures that occur in structural components. 

Since the Wang-Kramer method is based on the 
assumption that the matrix is linear elastic and since 
polyethylene has a non-linear strain-softening type of 
stress-strain curve up to the yield point, the stresses from 
the Wang-Kramer method are generally greater than 
from the purely experimental method of Brown and 
Wang. It is the nature of equation (1) that the calculated 
stress at the tip of the craze is sensitive to the value of a(x), 
the gradient of the craze profile at the craze tip. Since 0~(x) 
is difficult to measure at the tip of the craze, the calculated 
stress at the notch tip is uncertain as pointed out by Wang 
and Kramer 12 and by Chudnovsky et al) 6. 

It was found that the deformation surrounding a craze 
in polyethylene is more complex than the simple picture 
that the strain in the matrix is less than the yield strain. 
The actual contour of the tip of the notch not only affects 
the craze but also produces a concentration of strain at 
the sharp edges of the notch tip. These complex details 
were not reported in our previous paper 14, but now our 
confidence in the data has improved. 

EXPERIMENTAL PROCEDURE 

Materials 
Two types of linear polyethylene (PE) were 

investigated: (1) a homopolymer (HPE), with Mn = 19 600 

and Mw = 130 000; and (2) an ethylene-hexene copolymer 
(CPE) with 4.5 butyl chains per 1000 carbons, 
M.=15000  and Mw=170000. The resins were 
compression moulded and very slowly cooled to room 
temperature. Notched specimens were exposed to a 
tensile stress for a given period of time. The craze that 
emanated from the notch was small compared to the 
dimensions of the specimen. The conditions of 
deformation were plane strain. An important difference 
between the two materials is that growth rate of the 
damage zone for the HPE is about 102 times faster than 
for the CPE 17. Thus, the HPE is used for milk bottles and 
the CPE for gas pipes. The stress-strain curves for the two 
polymers are in Figure 2. 

Measurement of the strain distribution 
After a certain time, a specimen was unloaded and 

slices about 1-2 mm thick were taken from the centre of 
the specimen. The slicing was done with a fresh razor 
blade at a very slow controlled rate. The slice was then put 
in a small tensile jig (Figure 3) where, under a light 
microscope, the notch was opened by a definite amount 
relative to the original crack opening displacement (COD) 
that was observed prior to unloading the specimen for 
slicing. The slice was then coated with gold for the 
scanning electron microscope (SEM). SEM pictures are 
shown in Figure 4. Note the parallel scratches that were 
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Figure 2 Stress-strain curve ofhomopolymer and copolyrner at 26°C 
and strain rate 0.04 rain- ~ 

Figure 3 Tensile jig for SEM 
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Figure 4 SEM micrographs of craze in homopolymer: (a) optimum 
contrast for observing fibrils; (b) optimum contrast for measuring strain. 
N is notch tip and C is craze tip (1 and 2 refer to strain positions in Figure 
6) 

produced by the razor blade when the specimen was 
sliced. Before loading the slice, the scratches were all 
parallel. After loading the slice, the spacing of the 
scratches changed by an amount  that depended on the 
COD. 

The SEM photograph was mounted on a wall and the 
spacing of the scratches was measured as a function of 
position by a low-power microscope with a filar eyepiece. 
Pairs of prominent scratches near the boundary whose 
spacing was about 0.02 mm apart were chosen for the 
measurements. The change in spacing of the pair of 
scratches could be measured with an accuracy of _+ 0.5 ~o. 
The reference point for zero strain was at a point near the 
boundary of the free surface of the notch where the stress 
is zero. 

Measurement of the craze porosity 
The method of measuring the craze porosity is based on 

the principle used by Lauterwasser and Kramer ~s. 
Instead of using the transmission electron microscope 
(TEM) to measure the relative densities of the crazed and 
uncrazed material, a method of micro-X radiography was 
used. A specimen about 1-2 mm thick was sliced with the 
razor blade and placed in a jig which kept the notch open 
during the exposure to the X-rays. A high resolution X- 
ray film (Kodak SO-343) was placed against the specimen 
which was exposed to unfiltered radiation from a copper 
anode under 45 kV voltage and a beam current of about 
12 mA for about 10min. The film was then optically 
enlarged 150 times in a Zeiss microscope (Figure 5). From 
the optical densities of the enlarged negative at the three 
locations (1) ~bn in the notch, (2) ~b c in the craze and (3) q~m 
in the matrix, the porosity of the craze, (1 - ~ ,  can be 
calculated, where: 

ln(~¢/q~m) (1 - ~ =  ( 3 )  
ln(q~n/q~m) 

RESULTS 

The craze in the homopolymer 
Strain and stress by direct method. Figure 4a shows the 

SEM micrograph with the best contrast for observing the 
details of the fibriUar structure of the craze and the 
contour of the bottom of the notch. The sharp corners at 
the bottom of the notch were produced by the point of the 
razor blade. These points have been designated as the 
notch tip in Figure 6. Fracture of the fibrils at the base of 
the craze is evident. An SEM micrograph (Figure 4b) was 
taken so that the contrast of the scratches was enhanced. 
From Figure 4b the strain distribution was measured for 
two pairs of scratches 27 and 47 #m from the craze 
boundary (Figure 6). In Figure 6 the strain distributions 
at 25 and 47 ~tm from the notch are similar. This fact 
indicates that the measured strain distribution is 
practically the same as the strain distribution closer to the 
boundary. Starting from a point in the matrix far from the 
craze tip, the strain is uniform and equal to 5.2 ~o and 
4.5 ~ at distances of 27 and 4"7 ~tm respectively from the 
centre line of the craze. Thus, the far-field strain is about 

Measurement of the thickness profile 
The boundary of the crazes, as shown in Figures 4 and 

11, is irregular on a scale of 1 pm. The thickness of the 
craze profile was smoothed out by ignoring irregularities 
on the order of l #m.  Particular difficulty was 
encountered at the craze tip which was not well defined. 
In order to avoid the calculated stress from becoming 
infinite at the craze tip, it was necessary to smooth the tip 
so that the gradient of the profile became zero at the craze 
tip. This localized smoothing at the craze tip is somewhat 
arbitrary and consequently the calculated stress very near 
the craze tip is highly uncertain. In order to minimize this 
uncertainty, the profile of scratches near the craze tip was 
used to determine the gradient in the region of the craze 
tip. Figure 5 X-ray microradiograph of craze in copolymer 
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5 %. A maximum in the strain of 11% occurs at the craze 
tip. From the craze tip towards the base of the craze the 
strain rapidly decreases to about 1%. In the vicinity of the 
notch tip the strain exhibits a secondary maximum of 
about 2.5 % and then goes to zero beyond the notch tip. 
This secondary maximum is probably produced by the 
stress concentration produced by the sharp comer at the 
bottom of the notch. The fact that the strain becomes 
small in the neighbourhood of the base of the craze 
compared to the strain in the vicinity of the notch tip 
indicates that the fibrils near the craze tip are stronger 
than those near the base of the craze. This conclusion is 
supported by the micrograph of Figure 4a which shows a 
partial fracture of the fibrils in the vicinity of the base of 
craze. 

The stress distribution (Figure 7) based on Figure 6 was 
inferred from the stress-strain curve for the homopolymer 
in Figure 2. The stress in the matrix side of the craze tip 
appears to approach a value of 25 MPa. Since the depth 
of the notch, c, is 1000 #m and the stress in an elastic 
matrix is expected to decay approximately as (c/x) ~/2, 
then the value of the stress at 300 #m from the notch tip 
would not represent the far-field stress in an elastic solid. 

However since the matrix is a non-linear solid, as shown 
in Figure 2,itis expected that the stress would decay more 
rapidly than (c/x) 1/2. Probably 25 MPa represents the far- 
field stress in this specimen. 

The maximum in the stress of 26 MPa at the craze tip is 
not as sharp as the corresponding maximum in the strain. 
The secondary maximum of 17 MPa in stress is more 
pronounced than the corresponding secondary maximum 
in strain. The secondary maximum in stress occurs very 
close to the notch tip for the point 25 pm away whereas 
this maximum occurs prior to the notch point for a point 
47 #m away because the stress concentration tends to 
radiate from the sharp comer of the notch at an angle of 
about 45 ° . The shape of the stress distribution between 
the two maxima is different for the points 25 pm away 
compared to those 47pm away from the boundary. 
Possibly this difference is associated with the interaction 
of the stress field from the crazed region with the stress 
field generated by the stress concentration at the sharp 
comer of the notch. 

Calculated stress distribution. The stress was calculated 
with equation (1) based on the measurement of the 
thickness profile (Figure 8) for the craze in Figure 4b. The 
thickness profile determines w(x) as given in equation (2) 
and with a value of (1 - 1Q,-,0.5 that was obtained from 
the X-ray micrograph. There were two problems in 
determining the profile of the craze. In the vicinity of the 
craze tip, not only was it difficult to determine the tip but 
the profile was not well defined at the tip. In order to 
avoid having an infinite stress at the notch tip, equation 
(1) requires that the gradient be zero at the craze tip. 
Thus, the dotted shape of the craze profile near the craze 
tip is somewhat arbitrary. The second problem was how 
to handle the undulation in the profile that was observed 
in the neighbourhood of the notch tip. The undulation is 
larger than the uncertainty in the measurement. One 
could smooth out the undulation as indicated by the 
continuous curve or one could use the actual data points. 
We decided to calculate the gradient for both cases. 
Figure 9a shows the gradient ~t(x) for the smooth profile 
and Figure 9b shows 0t(x) for the actual data points. The 
corresponding stress distributions from equation (1) are 
shown in Figures lOa and lob. The extreme sensitivity of 
the stress distribution to the differences in the gradient 
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stress intensity was calculated from the equations12: 

and 

a 

e ,  f (t) 
K=2x/ /~j  tx/2 dt 

0 

(4) 

K = Ytr~c 1/2 (5) 

distributions is very apparent. For this reason the stress 
distribution at the craze tip is very arbitrary since T(x) is 
also somewhat arbitrary at the craze tip. 

In calculating the stress distribution the plane stress 
value of E * =  E was used because the craze profile was 
measured on a thin slice taken from the original specimen. 
However, the original craze was produced under plane 
strain conditions. The actual value of 1000 MPa for E was 
obtained directly from the homopolymer stress-strain 
curve in Figure 2. The choice of E is somewhat arbitrary 
because E depends on time. The strain rate for the stress- 
strain curve is different from the strain rate when the 
specimen was loaded in the tensile jig (Figure 3). In 
general the level of stress as calculated in Figures lOa and 
10b is higher than that by the direct method (Figure 7) 
because the calculated stress is based on the assumption 
of a linear elastic matrix. Both methods show a maximum 
at the craze tip. Both methods also give about the same 
value of 25 MPa for the asymptotic stress away from the 
craze tip. 

The far field stress, tr,~, was calculated as follows. The 

where Y is a geometry factor for the single edge-notched 
tensile specimen and has the value of 1.12x/~n - for our 
specimen geometry according to Paris and Sih19; c is the 
length of the notch and equal to 2 mm. The results from 
equation (4) give K =  1 . 0 M P a m  1/2, and the resulting 
value of tr~ o is 12 MPa,  which may be compared with the 
value of 25 MPa by the direct method. 

The craze in the copolymer 
Stress by direct method. Figure I I is the SEM 

micrograph from which the strain distribution of Figure 
12 was measured. The point designated as the notch tip 
corresponds to the point where the tip of the razor blade 
produces the tip of the notch. During the original loading 
of the specimen the craze was produced and at the same 
time the rounded portion of the bottom of the notch 
between the base of the craze and the notch tip was 
produced. This rounded comer is a source of stress 
concentration which is probably the main cause of the 
maximum in the strain in its neighbourhood. The strain 
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Figure 11 SEM micrograph of craze in copolymer. N is notch tip and 
C is craze tip (1 and 2 refer to strain positions in Figure 12) 
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field that emanates from the comers at the bottom of the 
notch are directly evident from the bright areas in the 
SEM micrograph in Figure 11. 

Another maximum occurs at the craze tip. The strain 
distribution between the craze tip and the base of the 
craze is nearly constant at about 20 %. In contrast to the 
homopolymer, where the strain rapidly decreased in 
going from the craze tip towards the base of the craze, the 
strain remains relatively high along the entire craze in the 
copolymer. This observation is consistent with the 
microscopic observation that no broken fibrils could be 
observed. Also the fibrils in the copolymer are generally 

much stronger than those in the homopolymer, as 
indicated by their high resistance to fracture by slow 
crack growth as shown by Lu, Wang and Brown 17. 

As for the homopolymer, the strain distribution in the 
region near the base of the craze is somewhat more 
complex for the strain 34/tm from the boundary 
compared to that 61/zm from the boundary. Again it is 
suggested that this complexity is associated with the 
interaction between the strain produced by the fibrils and 
the strain produced by the stress concentration at the 
bottom of the notch. 

The strains are appreciably larger than the yield strain, 
which is about 10 %. The observed strains were produced 
when the crazed specimen was subsequently loaded in the 
tensile jig prior to being photographed in the SEM. 
Whereas the craze was originally produced with a crack 
opening displacement (COD) of 86/~m, the final COD was 
103 #m. 

The stress distribution in Figure 13 was inferred from 
Figure 12 and the stress-strain curve of the copolymer in 
Figure 2. The stress distribution is nearly constant 
between the craze tip and the notch tip. The stress 
distribution near the boundary of the notch is associated 
with the stress concentration at the notch tip and not with 
the fibrillar structure of the craze. The stress distribution 
curve A (Figure I3) stops at the surface of the notch 
because the corresponding scratches were terminated by 
the notch. 

Calculated stress distribution. The thickness profile w(x) 
of the craze in Figure 11 is shown in Figure 14. The 
porosity (1 - ~ was about 0.5. Since the craze boundary 
was not well defined at the craze tip, a pair of scratches 
near the craze tip were used to complete the profile. These 
measured points near the craze tip indicated that the 
gradient is finite at the tip. However, in order to avoid a 
singularity in the stress, the profile was smoothed out so 
that the gradient is zero at the craze tip. The 
corresponding gradient curve, a(x), is shown in Figure 15 
and the calculated stress distribution is in Figure 16. 
E = 700 MPa was used as obtained from Figure 2. 

In comparing the stress distribution by the direct 
method (Figure 13) against the calculated stress 
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The direct method is very useful in that it measures the 
total strain, both elastic and plastic. There are two 
sources of strain in the matrix: (1) the strain produced by 
the fibrils and (2) the strain produced by the stress 
concentrations from the sharp corners at the notch tip. 

It is interesting to compare the homopolymer 
behaviour (Figure 7) with the copolymer (Figure 13). The 
decrease in stress in the homopolymer in going from the 
craze tip towards the notch indicates a gradual decrease 
in strength of the fibrils. The essentially constant stress 
between the craze tip and the notch in the copolymer 
indicates a uniformity in the fibril strength throughout the 
craze. Investigations of slow crack growth in these 
materials show that the fibrils in the copolymer tend to be 
much stronger than those in the homopolymer. However, 
the higher yield point of the homopolymer makes craze 
initiation more difficult in the homopolymer. 

The direct method has several limitations. The inferred 
stress is not the same as the stress that existed at the time 
the craze was produced under plane strain conditions. In 
order to measure an appreciable amount of strain, the 
notch must be opened somewhat more than the amount 
of opening that existed at the time when the craze was 
produced. When the specimen is loaded in the jig to a 
fixed opening of the notch, the stress relaxes by an 
indefinite amount. Thus, the measured strain consists of a 
plastic, a creep and an elastic component, but the stress is 
determined only by the elastic component. In spite of 
these limitations the direct method is more closely related 
to the material behaviour than the semi-theoretical 
method. In future investigations the change in strain as a 
function of the amount of notch opening will be 
determined. In addition the change in strain distribution 
between the loaded and unloaded state will be presented. 
This change in strain should be most closely related to the 
stress distribution that existed prior to unloading since 
stress is related to the elastic component of the strain. 
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distribution (Figure 16), both curves show a primary 
maximum at the notch tip. The general stress level is very 
much higher for the calculated stress and the asymptotic 
stress is twice that from the direct method. The calculated 
value of the asymptotic stress by means of equations (4) 
and (5) is 16.2 MPa, which compares very favourably 
with the value of 14 MPa by the direct method. 

DISCUSSION 

In general the calculated stresses are higher than those by 
the direct method as expected from the non-linear stress- 
strain behaviour of polyethylene. Also the calculated 
stress is unrealistic wherever it exceeds the yield point. A 
more linear elastic polymer such as polystyrene should 
give better agreement between the two methods. 
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A P P E N D I X  
Method o f  evaluating equation (I) 

F o r  the case of  semi-infinite crack loaded in mode  I 
tension the stresses on the craze bounda ry  can be 
calculated using the following equat ion given by W a n g  
and Kramer  12: 

a 

, . , ,  . E *  o,(t) 
~,x)=-4-~jkt) x _ t d t  (A1) 

0 

where 

i = l , . . . , n  

The choice of  n will depend on the number  of  data  points 
that  are used to determine ~(x). 

No te  that  this is a singular integral of  Cauchy  type and 
therefore the principal value must  be evaluated. 
Fol lowing Erdogan  et al. 2° a numerical integration 
procedure  for singular integrals based on a quadra ture  
formula of Gaussian type has been employed. After the 
cus tomary  t ransformat ion of  the integration interval to 
[ - 1 , +  I]  equat ion (1) m a y  be written: 

where 

1 

E* f V[~(1+x)1/2 a(t-) d F 
' ' ( i - i )  

- 1  

( 1 -  t-) 1/2 2 
- - - x  - 1 t----2t-  1 

g ( t )  = (1  -Jr- t ) l / 2  ' a O 

(A2) 

For  this choice of  V({) the r ight-hand side of  (A2) can be 
evaluated at appropriately selected values ~k given by:  

[ 2 k - 1  
Xk = COS ~ - i -  lr}, k = 1 . . . . .  n (A3) 

The corresponding integration formula applied to (A2) 
yields: 

1 

E* 
S(YCk) =4-~ f Vt/.)( 1 + y%)1/2 0c(t) d/- 

' ' (1-/-)1f2 ~ k - t  

-1 (A4) 

E* n 2 1 ~(~) 

= - r  l - ? ' ) " 2 ( 1  + ~k 
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